Embeddings of Levy Families into Banach Spaces

نویسنده

  • M. RUDELSON
چکیده

We prove that if a metric probability space with a usual concentration property embeds into a Banach space X, then X has a proportional Euclidean subspace. In particular, this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings spaces with concentration properties (i.e. uniformly convex spaces) into l ∞, thus providing an ”isomorphic” extension to results of Gromov-Milman and also generalizing estimates of Carl-Pajor and Gluskin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding Levy Families into Banach Spaces

We prove that if a metric probability space with a usual concentration property embeds into a finite dimensional Banach space X , then X has a Euclidean subspace of a proportional dimension. In particular this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings of metric spaces with concentration properties into l ∞, generalizing estimates of Bourg...

متن کامل

Distortion of embeddings of binary trees into diamond graphs

Diamond graphs and binary trees are important examples in the theory of metric embeddings and also in the theory of metric characterizations of Banach spaces. Some results for these families of graphs are parallel to each other, for example superreflexivity of Banach spaces can be characterized both in terms of binary trees (Bourgain, 1986) and diamond graphs (Johnson-Schechtman, 2009). In this...

متن کامل

Embeddings of Locally Finite Metric Spaces into Banach Spaces

We show that if X is a Banach space without cotype, then every locally finite metric space embeds metrically into X.

متن کامل

Embeddings of Proper Metric Spaces into Banach Spaces

We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...

متن کامل

Test-space characterizations of some classes of Banach spaces

Let P be a class of Banach spaces and let T = {Tα}α∈A be a set of metric spaces. We say that T is a set of test-spaces for P if the following two conditions are equivalent: (1) X / ∈ P; (2) The spaces {Tα}α∈A admit uniformly bilipschitz embeddings into X. The first part of the paper is devoted to a simplification of the proof of the following test-space characterization obtained in M. I. Ostrov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001